

LINEAR TABLES

NIASA'S LINEAR TABLES are translating units that can be easily controlled manually or commanded by **CNC**. Due to their lightness and ease of application they are very useful elements for mechanisation and handling in automated and robotic systems. In combination with a rotary device a fourth axis for radial positioning can be provided.

All **NIASA'S LINEAR TABLES** are equipped with high precision recirculating ball guideways allowing smooth and low noise operation.

Likewise, depending on the positioning tolerance and travel speed, high precision rolled or ground ball screws can be incorporated.

These **LINEAR TABLES** are modular elements that can be assembled on one, two or three axes. This universal option offers a simple solution to most applications, allowing at the same time the transfer of heavy loads in an optimum way due to its guiding system.

USEFUL LIFE OF THE TABLE: SELECTION PROCESS

- When selecting the correct table for each application, we must take into account the correction factors that appear in the equation used to calculate the life.
- It is advisable to reach a minimum of 500.000 m. to obtain smooth and accurate movements.
- All the values indicated are valid for tables that have 3/4 of their length seated on a solid base.
- Whenever these requirements are not met the table's life may be shortened.

 $L=(F_z . E . f_L / (Fm . K))^3 . 5 . 10^4 (m)$

Where:

L=Useful life of the table (m).

Fz=Load capacity of the table (N).

E=Correction factor depending on the working conditions

£=Correction factor depending on the type of movement and speed

Fm=Average force that will act on the table at a constant speed (N).

K=Correction factor depending on the way of applying the force. Depending on the relation between the moments generated by the forces and the distance between bearing blocks

K APPLICATION OF THE LOAD

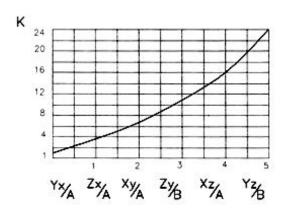
In order to obtain the suitable correction factors K, we must analyse in detail the way in which the load is applied on the table.

Whenever the load or loads are offcentered in several directions, the resulting K factors must be multiplied together. (See graphs bellow)

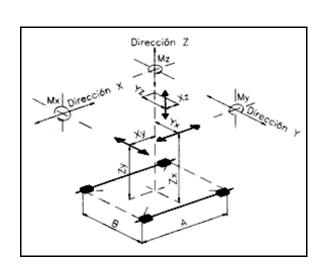
Fm AVERAGE LOAD

When the load that has to be supported by the table is not equal, the load must be calculated according to the following expression:

$$\mathsf{Fm} \! = \! \sqrt[3]{\mathsf{F_{1}}^{3} \cdot (\mathsf{q_{1}} \, / \, 100) + \mathsf{F_{2}}^{3} \cdot (\mathsf{q_{2}} \, / \, 100) + \mathsf{F_{3}}^{3} \cdot (\mathsf{q_{3}} / 100)} \! + \! \ldots$$


Where F1, F2, F3,... are the forces that will act during the time intervals q1,q2,q3,... as % of the total time.

E WORKING CONDITIONS


E Working conditions	
Small masses, light inpact Medium masses, light vibrations or impacts Large masses, large impacts, vibrations	1,00,8 0,80,5 0,50,3

fL SPEED AND TYPE OF MOVEMENT

fL Vitesse et type de mouvement	
Regular movements, low speeds	<15m/min. 1,00,8
Irregular movemets, medium speeds	<60m/min. 0,80,5
Osdillating movements, high speeds	>60m/min. 0,50,3

A, B \rightarrow Distances between bearing blocks. See Charts of dimensions.

TORQUE CALCULATION REQUIRED POWER

TORQUE

 $M_T = M_m + M_h + M_c + M_r$

 $M_m = I_m . (2000 . ¶ / p) . a$

 $M_h = I_h . (2000 . ¶ / p) . a$

 $M_c = (m_c + m_s) \cdot (p / (2000 \cdot \P)) \cdot a$

 $M_r = (p / (2000 . \P . C)) . F_x$

 M_T = Required total torque (motor torque) (Nm) M_m = Torque generated by the motor inertia (Nm)

 \mathbf{M}_{h} = Torque generated by the ball screw inertia (Nm)

 M_c = Torque generated by the slide's inertia and the

mass on the slide (Nm)

Mr = Resisting torque, due to the load and the slide's

friction(Nm)

Im = Motor's inertia (kgm²)

In = Screw's inertia (kgm²)

m_c= Slide mass (kg)

 m_s = Mass on the slide (kg)

p = Screw pitch or feed per revolution (mm)

 \mathbf{a} = slide acceleration (m/sg²)

C = 0,8 for the ball screw

0,2 for the trapezoid screw

 \mathbf{F}_{x} = Force in the feed direction (N)

POWER

 $P_T = Mt \cdot n / 9550$

PT = Required motor power (kW)
n = motor speed (rpm)

MAINTENANCE, TYPE OF PROTECTION

The linear table needs lubrication similar to ball bearings. It is advisable to use grease lubrication. Should you require oil please check with our technicians.

In normal working conditions, the greasing period is approximately of 400-800 hours running. The unit is delivered lubricated with KLUBER ISOFLEX TOPAS NLGI Type 2 grease, according to DIN 51818. When used at high speeds the table should be lubricated with Type 3 grease. Avoid excess greasing otherwise the oscillating movement will deposit too much grease on the guideway, thus producing friction and a rise in temperature.

PROTECTION USING BELLOWS

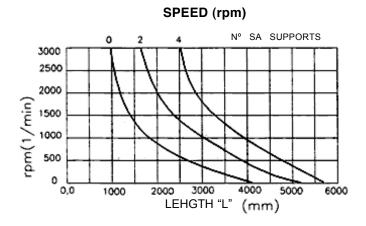
When using bellows to protect the table's transmission elements you will reduce the stroke due to the space occupied by the compressed bellows.

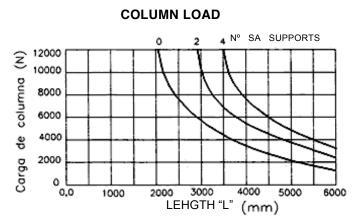
See below the chart with the strokes, values that have to be taken into account, depending on the useful stroke required:

SIZE		20 OKE		532 ROKE	3040 STROKE				
BELLOWS	NO 250 500 750 1000 1250	YES 170 350 550 750 1000	NO 250 500 750 1000 1250 1500 1750 2000	YES 180 370 580 800 1030 1250 1480 1700	NO 250 500 750 1000 1250 1500 1750 2000	YES 190 380 600 840 1070 1300 1530 1750			

For other strokes these data can be interpolated or please contact NIASA's technical department.

MAXIMUN TRAVEL SPEEDS AND LOAD COLUMN

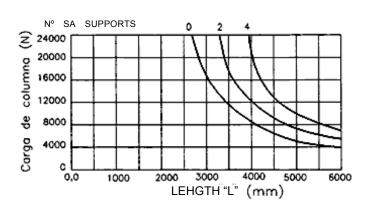

The following diagrams show the maximum speeds (rpm) of the tables equipped with a ball screw, depending on the table's length and on the loads applied. These limits can be increased using supports (SA) as showek on the following graphs.


SIZE 1020

SPEED (rpm) N° SA SUPPORTS 3000 2500 2000 rpm(1/min) 1500 1000 500 3000 5000 6000 0.0 1000 2000 LEHGTH "L" (mm)

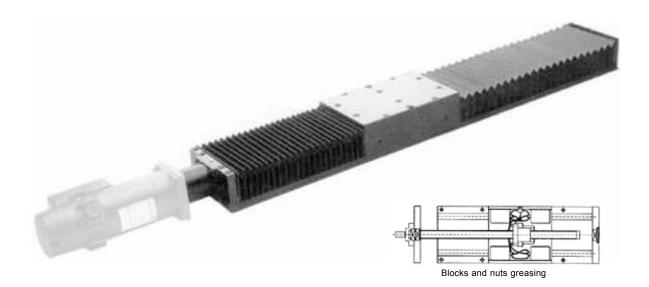
COLUMN LOAD N° SA SUPPORTS 3000 2500 columna 2000 1500 ę 1000 Carga 500 0,0 1000 3000 5000 6000 2000 LEHGTH "L" (mm)

SIZE 1532



SIZE 3040

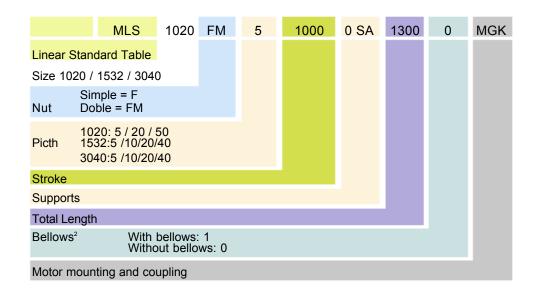
Nº SA SUPPORTS 3000 2500 2000 rpm(1/min) 1500 1000 500 0,0 4000 5000 1000 2000 3000 6000 LEHGTH "L" (mm)


SPEED (rpm)

COLUMN LOAD

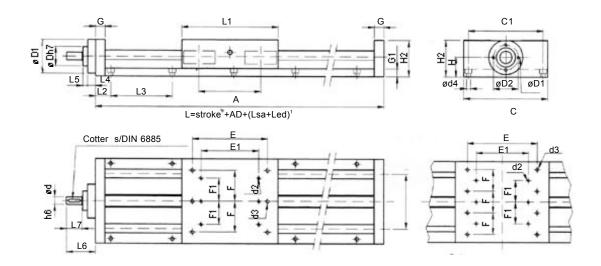
STANDARD LINEAR TABLES MLS

The standard linear table is the most popular of our tables, both in terms of production and versatility. It is a compact table, specially designed for heavy loads and to work on all axes as indicated in the introduction of the linear tables.


As a protection system against dust and other harmful elements that may interfere with its adequate functioning, it is possible to equip these tables with protecting bellows. Although these bellows do not hermetically seal the unit, they act as an important

barrier against contamination of the table. It is essential to remember that these bellows reduce the slide's useful stroke, and therefore this information will have to be provided to NIASA when ordering these tables.

All tables equipped with ballscrews can be fitted with preloaded double nuts, to eliminate all free movement between the drive screw and the carriage.


DESIGN EXAMPLE

Linear Standard Table MLS, Size 1020, Double nut, Screw pitch 5 mm, Stroke 1000 mm, without supports, Total length 1300 mm, without protecting bellows, with motor mounting and coupling.

STANDARD LINEAR TABLE MLS

DIMENSIONS

Size	Α	В	С	C1	d	d1	d2	d3	d4	D	D1	D2	Е	E1	F F1
1020 1532 3040	142 161 218	108 142 200	170 220 300	150 195 260	14 20 25	M8 M8 M10	- M8 M10	M8 M10 M12	9 11 13	30 50 55	62 89 104	45 65 75	150 195 260	- 150 195	60 - 80 60 80 80
Size	G	G1	Н	H1	H2	L1	L2	L3	L4	L5	L6	L7	AD		
1020 1532 3040	20 25 30	15 20 25	35 51 60	68 95 113	66 94 112	220 250 350	30 40 50	120 160 160	15 20 20	10 13 13	52 75 85	25 40 50	300 350 450		

TECHNICAL DATA

	Fx	Fy	Fz	Mx	My	Mzta
Size	N	N	N	Nm	Nm	Nm
1020	2300	26000	29000	1500	2000	1700
1532	9000	38000	42800	3000	3400	3000
3040	18000	70000	79200	7900	9000	7900

Size	Screw Pitch	speed max.	speed max.	Accel. max.	Screw Diameter	Stroke 0	Table's mass Each 100	Slide	Inertia Screw	Position Precision	Length₃ Max.
1020 1532 3040	mm 5,20,50 5,10,20,40 5,10,20,40	3000 3000	120	m/s ² 10 10 10	mm 20 32 40	kg 12,5 25 67	kg 1,2 2,1 4,4	kg 7 13 37	kgm ₂ /m 8,8.10 ₋₅ 6,4.10 ₋₄ 1,6.10 ₋₃	mm ±0,05 ±0,05 ±0,05	mm 5600 5600 5600

¹**Lsa**: Supports (whenever the length requires). **Led**: Additional space, for micro switches, etc.

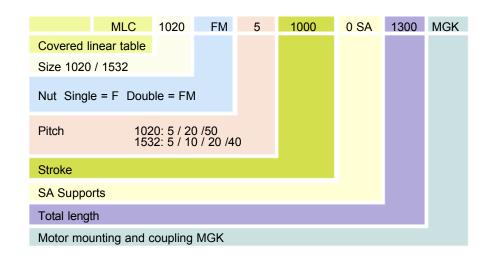
² The bellws reduce the useful stroke.

³ For other strokes please contact NIASA's technical departament.

COVERED LINEAR TABLE MLC

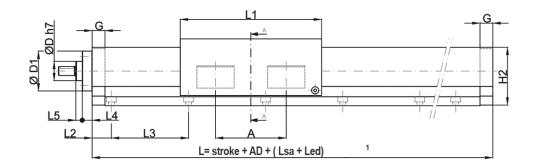
The COVERED LINEAR TABLES, are translation units almost identical to the Standard Linear Tables. The main difference lies in the fact that these are equipped with a metal cover that protects the most sensitive components such as: the guides, the screws, the nuts, the linear bearings, etc.

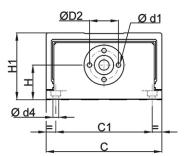
This type of protection is more robust than the bellows used on the MLS range. The metal cover offers greater protection in an agressive environment, where high temperature, metal particles or where debris from other processes such as welding may be a problem.

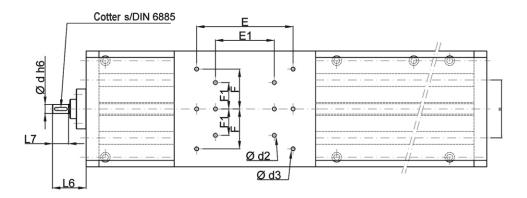

The second advantage is that the stroke is not reduced by the protecting cover because the carriage moves over the cover from one end of the table to the other.

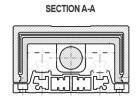
As with the MLS tables, the MLC tables can be manually commanded or by using CNC. They are also equipped with high precision recirculating ball guides, and rolled or ground ball screws, also of high precision.

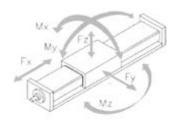
They can be assembled on one, two or three axis, and they are of great use in the mechanisation and multiple application devices.


DESIGN EXAMPLE


Linear standard table MLC, Size 1020, Double nut, Screw pitch 5 mm, Stroke 1000 mm, without SA supports, Total length 1300 mm, with motor mounting and coupling.




COVERED LINEAR TABLE MLC



DIMENSIONS

Size	Α	В	С	C1	d	d1	d2	d3	d4	D	D1	D2	Е	E1	F	F1
1020 1532	110 145	90 122	180 235	150 200	14 20	M8 M8	_ M8	M8 M10	9 11	30 50	62 89	45 65	150 195	150	62 80	- 60
Size	G	G1	Н	H1	H2	L1	L2	L3	L4	L5	L6	L7	AD			
1020 1532	20 25	14 18	54 72	104 135	90 113,5	220 250	30 65	120 160	15 20	10 13	52 75	25 40	300 350			

TECHNICAL DATA

Size	Fx	Fy	Fz	Mx	My	Mz
	N	N	N	Nm	Nm	Nm
1020 1532		26000 38000				

	Screw	Speed	Spees	Accel.	Screw	7	able's mass		Inertia	Position	Length ²
Size	Picth	max.	max.	max.	diameter	Stroke 0	Each 100	Slide	Screw	Precision	Max.
	mm	rpm	m/min	m/s ²	mm	kg	kg	kg	kgm²/m	mm	mm
1020 3040	5,20,50 5,10,20,40	3000 3000	150 120	10 10	20 40	19,1 53,5	1,4 3,1	11,8 31,8	8,8.10 ⁻⁵ 6,4.10 ⁻⁴	±0,05 ±0,05	5600 5600

¹**Lsa**: Supports (whenever the length requires).

Led: Additional space, for micro switches etc.

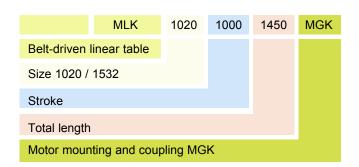
²For other strokes please contact NIASA's technical department.

BELT-DRIVEN LINEAR TABLE MLK

The Belt-driven linear table MLK has all the advantages of the standard MLC table:

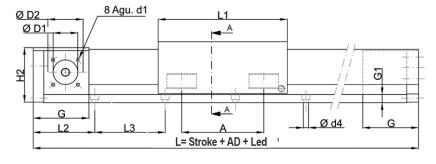
- It is equipped with a protecting metal plate
- No stroke space is lost, because the slide moves over the metal cover.

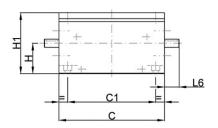
Furthermore, this table has the advantage of being able to work at high speeds, because instead of using a screw it moves using a system of belt and pulleys.

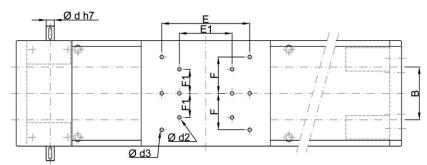

Nevertheless, we must indicate that the precision is not the same as that provided by the ball screw, due to the belt properties.

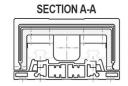
This table has been designed for applications with the following characteristics:

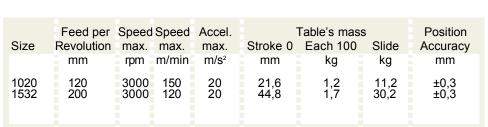
- Hostile environments, as the MLC
- Work with medium/heavy loads.
- High working speeds.

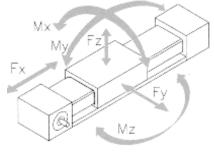

DESIGN EXAMPLE


Belt-driven Linear table, Size 1020, Stroke 1000 mm, Total length 1450 mm., with motor mounting and coupling.




BELT-DRIVEN LINEAR TABLE MLK




DIMENSIONS

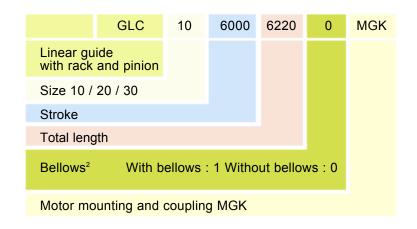
Size	Α	В	С	C1	d	d1	d2	d3	d4	D1	D2	Е	E1	F	F1 G
1020 1532	140 145	90 122	180 235	150 200	14 24	M6x15 M8x15	- M8	M8 M10	9 11	42 52	60 80	150 195	- 150	62 80	- 95 60 130
Size	G1	Н	H1	H2	L1	L2	L3	L6	AD						
1020 1532	14 18	52 65	104 135	93 131		105 170			450 550						

TECHNICAL DATA

Size	Fx	Fy	Fz	Mx	My	Mz
	N	N	N	Nm	Nm	Nm
1020	1300	26000	29000	1300	2000	1700
1532	4800	38000	42800	2600	3100	2700

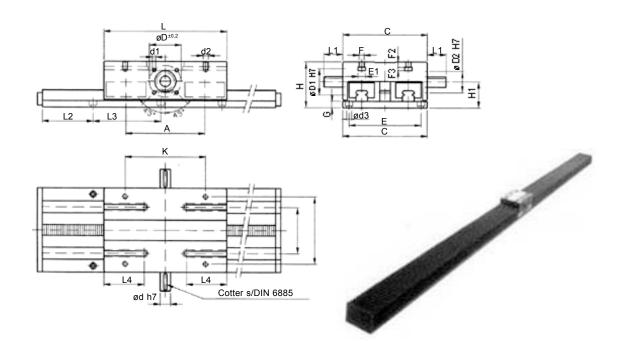
¹Led: Additional space, for micro switches etc.

LINEAR GUIDE WITH RACK GLC


NIASA's GLC rack-pinion linear guides are translation units with no travel limitation. Their simple design and great robustness transform them into very useful elements for mechanisation. They are equipped with precision ball guides designed to support heavy loads, extremely high rigidity, maximum precision and very low noise levels.

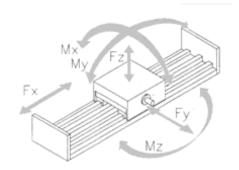
The combination of the ball guides with the rack-pinion moving system has creates a compact linear translation unit with many advantages. In a hostile environment it is possible to fit bellows.

This guide is available in three standard sizes, and can be manufactured in any other length.


DESIGN EXAMPLE

Linear guide GLC, Size 10, Stroke 6.000 mm, Total length 6.220 mm, without protecting bellows, with motor mounting and coupling.

LINEAR GUIDE WITH RACK GLC

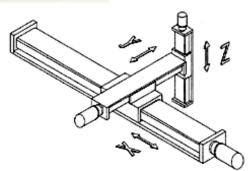


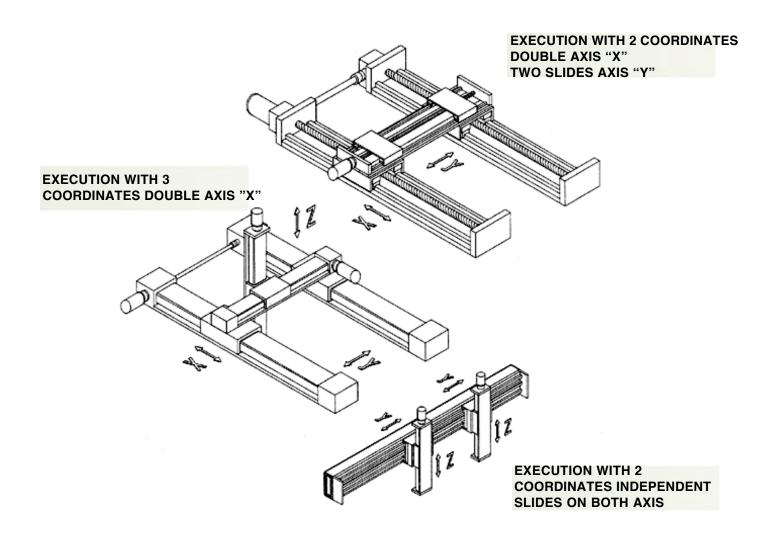
DIMENSIONS

Size	Α	В	С	d	d1	d2	d3	D	D1	D2	Е	F	F1	F2	F3	G
GLC10 GLC20 GLC30	142 186 290	68 110 180	130 200 310	20 25 35	M6 M8 M10	M10 M12 M16	9 11 13	60 75 112	47 62 80	35 50 90	110 170 270	10 12 14	16 18 25	10 12 14	8 8 11	15 15 25
Size	Н	H1	J	К	L	L1	L2	L3	L4							
GLC10 GLC20 GLC30	88 108 171	52 61 100	110 160 260	150 190 295	220 290 430	35 45 60	90 120 160	120 160 240	70 95 120							

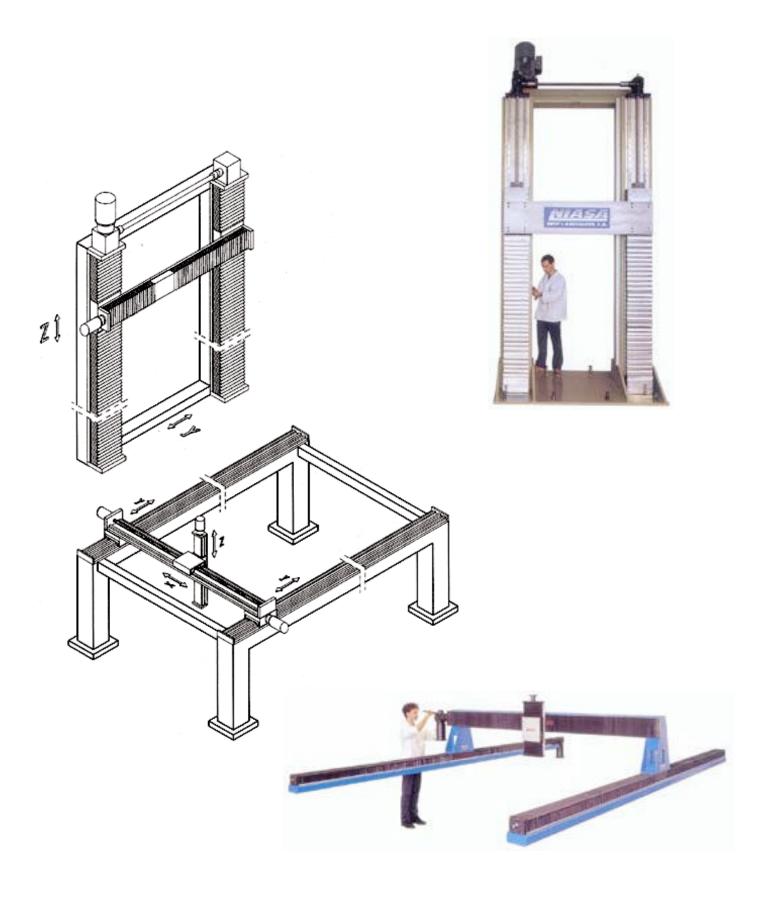
TECHNICAL DATA

Size	Fx N	Fy N	Fz N	Mx Nm	,	Mz Nm	Par Trans. Nm
GLC10 GLC20 GLC30	2200	46000	52400	2900	4800	4200	31 61 120


Size	Feed per Speed Speed revolution max. max.			Accel. max.	Table's mass Stroke 0 Each 100 Slide			Position Precision
	mm	rpm	m/min	m/s²	mm	kg	kg	mm
GLC10 GLC20 GLC30	120 150 240	1250 1000 750	150 150 180	30 30 30	11,8 26,7 87	1,1 2,1 4,8	9 19,5 82	±0,1 ±0,1 ±0,1


² The bellows reduce the useful stroke.

APPLICATION EXAMPLES


EXECUTION WITH 3 COORDINATES PROJECTING TABLE

LARGE DIMENSIONS

